### Using Liquid-Liquid Extraction (LLE)?

### There's a Cleaner Way!







### Road to Success

To our LLE users,

Replace LLE and find the way to cleaner samples. Both destinations will increase throughput, save time, improve selectivity, and lead to more consistent results.

So where are you headed?



### **Destination: Cleaner**

### **Supported Liquid Extraction (SLE)**

- Solid support mimics LLE
- No emulsions
- · Reduces solvent waste
- 2 simple steps: load and elute

### **Destination: Cleanest**

### **Solid Phase Extraction (SPE)**

- Targeted specifically for analytes of interest and to remove matrix inferences
- Consistently high recoveries
- Process small or limited sample volumes
- Increased concentration



### **Confused? Lost? Frustrated?**

### Let our team navigate for you!

Email us: <u>SamplePrepSpecialist@phenomenex.com</u>

LiveChat us: www.phenomenex.com/livechat

### guarantee

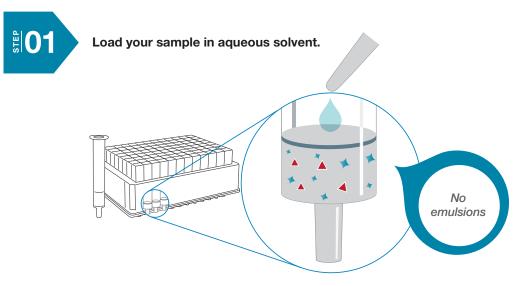
If Phenomenex products mentioned in this guide do not provide at least equivalent separation to other products of the same phase and dimensions, send in your comparative data within 45 days and keep the Phenomenex product for FREE.

© 2018 Phenomenex, Inc. All rights reserved.



### Table of Contents

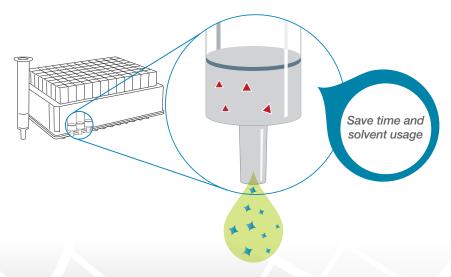
| Destination: Cleaner                                  | Mile      |
|-------------------------------------------------------|-----------|
| Supported Liquid Extraction (SLE)                     | pp. 4-10  |
| Overview                                              | p. 4      |
| SLE App: Corticosteroids from Plasma                  | р. 6      |
| SLE App: Comprehensive Drug Research Panel from Urine | p. 7      |
| SLE App: <b>Sterols in Olive Oil</b>                  | p. 8      |
| SLE App: Acids, Neutrals, and Bases from Urine        | p. 10     |
| P Destination: Cleanest                               |           |
| Solid Phase Extraction (SPE)                          | рр. 11-16 |
| Overview                                              | p. 11     |
| SPE App: <b>Pharmaceutical Drugs</b>                  | p. 12     |
| SPE App: Semivolatile Environmental Pollutants        | p. 14     |
| SPE App: <b>Urinary Catecholamines</b>                | p. 16     |
| Ordering Information                                  | pp. 17-19 |


Phenomenex | WEB: www.phenomenex.com



# Supported Liquid Extraction (SLE)

SLE produces more reproducible results, increased accuracy, and higher throughput possibilities than Liquid-Liquid Extraction by utilizing a solid support to mimic LLE. Phenomenex offers two types of SLE sorbent: diatomaceous earth (Strata® DE) and an exclusive synthetic sorbent (Novum™). With very little method development, both SLE options remove unwanted matrix interferences to provide cleaner samples than LLE.


### Two Simple Steps for a Cleaner Extraction:



- Interferences (i.e. phospholipids, proteins, salts, etc.)
- Target Analytes



Collect target analytes in water immiscible solvent for analysis.





# Supported Liquid Extraction (SLE)

### Select Your SLE Sorbent!

View the differences in our sorbent options:





**Synthetic** 

Sorbent

**Diatomaceous Earth** 

Lot-to-lot consistency and reproducibility

**Advantages** 

Cost effective and large volume capabilities

Ethyl Acetate, Methyl Tert-Butyl Ether (MTBE)

**Extraction** Solvents

Dichloromethane (DCM), Hexane, MTBE, Ethyl Acetate

MINI 96-Well Plates, MAX 96-Well Plates

Plate Formats

200 µL 96-Well Plates, 400 µL 96-Well Plates

1cc, 3cc, 6cc, 12cc

Tube Formats

12cc and 60cc

### Still need help?

SLE sorbent selections are dependent on extraction solvents, sample volumes, and analytes being extracted. To learn which SLE product is right for your extraction method:



Call us

or



**Live Chat** 

www.phenomenex.com/LiveChat



### SLE Application: Corticosteroid Extraction From Plasma

### Introduction

A method was established using Strata® DE SLE for a wide range of corticosteroid compounds from plasma, which are then analyzed by LC-MS/MS. All compounds in the suite provided recovery greater than 90%, displaying the high recovery capabilities available when using SLE over LLE, with the exception of Triamcinolone. Triamcinolone is the most polar compound in the suite and is simply too hydrophilic to be extracted by DCM. Acceptable recoveries can be obtained by changing to ethyl acetate as an elution solvent. All compounds show a % CV of less than 12%. By using a simple method with Strata DE SLE, **high recoveries and low variability** between samples was achieved.

### **Pre-treatment**

Dilute 100  $\mu L$  of spiked plasma (125 ng/mL) with 200  $\mu L$  of water.

### **SLE Protocol**

| 96-Well Plate: | Strata DE SLE 400 µL 96-Well Plate                                                                                     |
|----------------|------------------------------------------------------------------------------------------------------------------------|
| Part No.:      | 8E-S325-5GB                                                                                                            |
| Load:          | 300 µL pre-treated sample onto plate (apply vacuum or positive pressure to pull/push sample into sorbent if necessary) |
| Wait:          | 5 minutes                                                                                                              |
| Elute:         | $3x600\mu L$ Dichloromethane (DCM) or $3x600\mu L$ Ethyl Acetate                                                       |
| Apply:         | Vacuum or apply positive pressure at 5-10" Hg for 10 seconds                                                           |
| Dry:           | Sample under slow stream of Nitrogen at 30°C                                                                           |
| Reconstitute:  | 200 µL Acetonitrile/Water (20:80)                                                                                      |

### **LC-MS/MS Conditions**

Column: Kinetex® 2.6 µm C18
Dimensions: 50 x 2.1 mm
Part No.: 00B-4462-AN
Guard Cartridge: SecurityGuard™ ULTRA C18
Guard Part No.: AJ0-8782
Mobile Phase: A: 0.1% Formic acid in Water
B: 0.1% Formic acid in Acetonitrile
Gradient: Time (min) % B

Gradient: Time (min) % B
0 20
3 95
3.5 95
3.51 20
6 20

Flow Rate: 0.5 mL/min

Injection: 5 µL

Detection: MS/MS (SCIEX API 4000™), ESI+

### Recovery Values and % RSD

| Elution Solvent   | Dichloromethane |                | Ethyl Acetate |                 |
|-------------------|-----------------|----------------|---------------|-----------------|
| Analyte           | %<br>Recovery   | % RSD<br>(n=4) | %<br>Recovery | % RSD<br>(n=10) |
| β-Methasone       | 92              | 4              | 98            | 6               |
| Cortisone         | 96              | 10             | 96            | 8               |
| Coritcosterone    | 92              | 3              | 74            | 10              |
| Cortisone Acetate | 90              | 12             | 112           | 12              |
| Triamcinolone     | 13              | 8              | 92            | 9               |
| Prednisone        | 94              | 7              | 93            | 10              |
| Testosterone      | 95              | 5              |               |                 |

<sup>\*</sup>Testosterone was not extracted using Ethyl Acetate





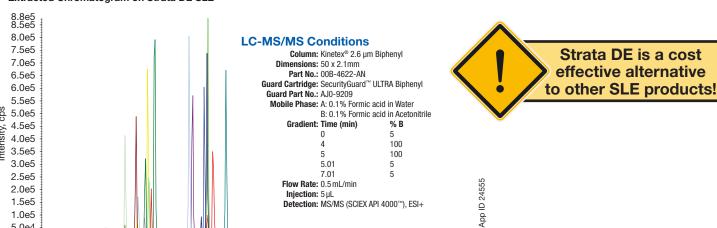
### SLE Application: Comprehensive Drug Research Panel From Urine

### Introduction

To determine whether Strata® DE is a viable alternative to Biotage® ISOLUTE® SLE+, drugs of abuse were extacted from urine and then analyzed by LC-MS/MS. The recovery values and % CVs for both Strata DE SLE and Biotage ISOLUTE SLE+ are in **Table 1**. While recoveries vary slightly between different analytes, both products exhibit > 85% recovery for all analytes included. For this sample set the Strata DE maintains an average % CV of 9%, while the Biotage ISOLUTE SLE+ plate has a slightly higher average % CV of 10 % . The data displays that Strata DE is comparable to an industry standard diatomaceous earth SLE product and exhibits consistently high recoveries with excellent separation in a comprehensive drug research panel.

### **Pre-treatment**

Combine 100 uL of spiked urine, 15 uL Campbell β-Glucuronidase (Part No. DR2102), 35 μL 100 mM Ammonium Acetate (pH4), and 150 µL of 100 mM Ammonium Bicarbonate (pH 10).


### **SLE Protocol**

| 96-Well Plate: | Strata DE SLE 400 µL<br>Biotage ISOLUTE SLE+ 400 µL                                                                    |
|----------------|------------------------------------------------------------------------------------------------------------------------|
| Part No.:      | 8E-S325-5GB (Strata DE)                                                                                                |
| Load:          | 300 µL pre-treated sample onto plate (apply vacuum or positive pressure to pull/push sample into sorbent if necessary) |
| Wait:          | 6 minutes                                                                                                              |
| Elute:         | 3x600 μL Dichloromethane/IPA (95:5)                                                                                    |
| Apply:         | Vacuum or apply positive pressure at 5-10" Hg for 10 seconds                                                           |
| Dry:           | Sample under slow stream of Nitrogen at 30°C                                                                           |
| Reconstitute:  | 100 µL 0.1% Formic acid/Methanol (4:1) with internal standard                                                          |

Recovery Values and % CVs: Strata DE vs. Biotage ISOLUTE SLE+

|                  | Strata DE     |               | Biotage<br>ISOLUTE SLE+ |               |
|------------------|---------------|---------------|-------------------------|---------------|
| Analyte          | %<br>Recovery | % CV<br>(n=8) | %<br>Recovery           | % CV<br>(n=8) |
| 6-MAM            | 98            | 9             | 88                      | 16            |
| Alprazolam       | 104           | 10            | 98                      | 11            |
| Benzoylecgonine  | 88            | 6             | 98                      | 11            |
| Buprenorphine    | 93            | 7             | 102                     | 15            |
| Codeine          | 99            | 12            | 93                      | 9             |
| Diazepam         | 107           | 7             | 104                     | 6             |
| Fentanyl         | 85            | 5             | 94                      | 8             |
| Hydrocodone      | 104           | 11            | 93                      | 11            |
| Hydromorphone    | 95            | 9             | 93                      | 11            |
| Lorazepam        | 94            | 8             | 98                      | 8             |
| Methamphetamine  | 92            | 16            | 102                     | 8             |
| Morphine         | 98            | 12            | 94                      | 12            |
| Norbuprenorphine | 101           | 11            | 92                      | 11            |
| Nordiazepam      | 100           | 9             | 92                      | 8             |
| Norfentanyl      | 113           | 7             | 110                     | 11            |
| Oxycodone        | 97            | 5             | 93                      | 11            |
| PCP              | 90            | 7             | 98                      | 6             |

### **Extracted Chromatogram on Strata DE SLE**



3.5

4.0

4.5

5.0

5.5

6.0

6.5

Comparative separations may not be representative of all applications.

5.0e4

0.0



### SLE Application: Determination of Sterols in Olive Oil

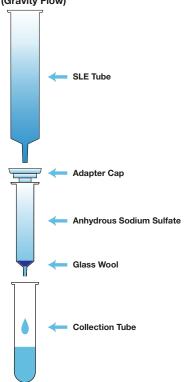
### Introduction

Due to frequent adulteration, a reliable and efficient method was developed to determine the concentration of sterols in olive oil, which can confirm the classification of oil. Presented is a modified International Olive Council (IOC) method for sterol determination improved upon by replacing LLE with a SLE protocol using diatomaceous earth, Strata® DE, for a quick and accurate extraction and further clean-up of the sample by Solid Phase Extraction (SPE) to remove hydrocarbons as well as more polar interferences from the solution. The isolated sterols and triterpene alcohols are then derivatized as the trimethylsilyl ethers prior to GC-FID analysis. The result is an improved method for determining sterols, erythrodiol, and uvaol in olive oil by utilizing faster and more accurate extraction techniques.

### **Sample Preparation**

### **Internal Standard Preparation**

Add  $40\,\mu\text{L}$  of 1 mg/mL cholestanol in chloroform to a clean, dry 20 mL screw-top test tube and evaporate to dryness under a nitrogen flow.


### **Saponification**

- Add 200 mg of olive oil sample to the test tube containing the internal standard.
- 2. Add 1.5 mL of 2M Potassium hydroxide in 95% Ethanol.
- 3. Cap the tube and heat in an 80 °C oven for 25 minutes.
- Mix sample gently to ensure homogeneity (sample should appear as a clear solution) and continue heating for an additional 25 minutes.
- After heating, add 13.5 mL of deionized water and mix. The entire diluted volume is now ready to load onto the SLE cartridge.

### **SLE Protocol**

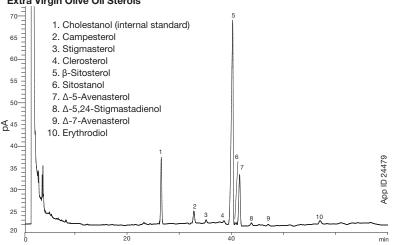
| Cartridge:    | Strata DE SLE cartridge, 20 mL loading capacity, 60 cc Tube                                                 |
|---------------|-------------------------------------------------------------------------------------------------------------|
| Part No.:     | 8B-S325-VFF                                                                                                 |
| Load:         | Diluted sample (from saponification step 5) plus 2 x 1 mL DI water rinse (17 mL total volume, gravity flow) |
| Wait:         | 15 minutes                                                                                                  |
| Extract:      | 3x15mL Diethyl Ether (gravity flow)                                                                         |
| Evaporate:    | Dry under N <sub>2</sub> at 40 °C (greenish-yellow, oily residue)                                           |
| Reconstitute: | 5 mL of Hexane                                                                                              |

SLE setup with sodium sulfate drying tube attached to a SLE column (Gravity Flow)

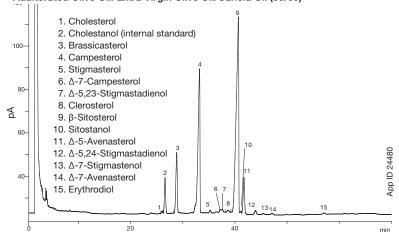


Anhydrous sodium sulfate used to dry sample.

### **SPE Protocol and Derivatization**


| Cartridge:      | Strata Si-1 (1 g/6 mL) tube                                                                                                                                                                  |
|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Part No.:       | 8B-S012-JCH                                                                                                                                                                                  |
| Condition:      | 1. 2 x 6 mL Hexane 2. 1 mL 0.2M Potassium hydroxide in 95% ethanol                                                                                                                           |
| Equilibrate:    | 5 mL Hexane (immediately after potassium hydroxide elution)                                                                                                                                  |
| Load:           | Reconstituted SLE extract (5 mL) followed by 2 x 1 mL Hexane rinses                                                                                                                          |
| Wash:           | 85 mL Hexane/Diethyl ether (98:2) under 3" Hg<br>vacuum, flow rate of 2 mL/min*                                                                                                              |
| Elute:          | 10 mL Hexane/Diethyl ether (60:40)                                                                                                                                                           |
| Dry:            | Dry under $\rm N_2$ at 50 °C. After evaporating to dryness, add 3-4 drops of acetone and then re-evaporate under $\rm N_2$ to remove any occluded water. Place in 100 °C oven for 10 minutes |
| Derivatization: | 250 µL Pyridine/BSTFA (3:1) at 80 °C for 30 minutes                                                                                                                                          |

 $<sup>^*\</sup>text{To}$  handle the large volume of eluant, a 60 mL empty reservoir tube was attached to the 6 mL SPE tube.




### SLE Application: Determination of Sterols in Olive Oil (cont'd)

### **Extra Virgin Olive Oil Sterols**



### Adulterated Olive Oil: Extra Virgin Olive Oil/Canola Oil (50/50)



### **GC-FID Conditions**

Conditions for both separations:

Column: Zebron™ ZB-5<sub>PLUS</sub>™ Dimensions: 30 m x 0.25 mm x 0.25 µm Part No.: 7HG-G032-11

**Recommended Liner:** Zebron PLUS Single Taper Z-Liner™ (for Agilent® systems)

Liner Part No.: AG2-0A13-05 Injection: Split 5:1 @ 280 °C, 1  $\mu$ L

Carrier Gas: Helium @ 0.9 mL/min (constant flow)
Oven Program: 260 °C for 70 min

Detector: FID @ 300°C

Samples: Analytes were derivatized with Pyridine/BSTFA (3:1)

### IOC Sterol Criteria for Virgin Olive Oil Classification

| Standard Name          | IOO Standard Oritaria fan Vinnia Olina Oli | Extra Virgin Olive Oil |             | Adulterated Olive Oil |             |
|------------------------|--------------------------------------------|------------------------|-------------|-----------------------|-------------|
| Standard Name          | IOC Standard Criteria for Virgin Olive Oil | % Recovery             | % RSD (n=3) | % Recovery            | % RSD (n=2) |
| Apparent β-Sitosterol* | ≥ 93.0% of total sterols                   | 94.6%                  | 0.3         | 60.3%                 | 1.2         |
| Cholesterol            | $\leq 0.5\%$ of total sterols              | not detected           | -           | 0.3%                  | 13.3        |
| Brassicasterol         | ≤ 0.1% of total sterols                    | not detected           | -           | 8.7%                  | 0.7         |
| Campesterol            | ≤ 4.0% of total sterols                    | 3.8%                   | 6.8         | 29.1%                 | 1.3         |
| Stigmasterol           | ≤ Campesterol (≤ 4.0% of total sterols)    | 1.0%                   | 9.0         | 0.6%                  | 45.0        |
| Δ-7-Stigmastenol       | ≤ 0.5% of total sterols                    | not detected           | -           | 0.7%                  | 2.9         |
| Uvaol + Erythrodiol    | ≤ 4.5% of total sterols                    | 1.8%                   | 31          | 0.3%                  | 1.0         |
| Total Sterols          | ≥ 1000 mg/kg                               | 1324 mg/kg             | 6           | 4221 mg/kg            | 1.0         |

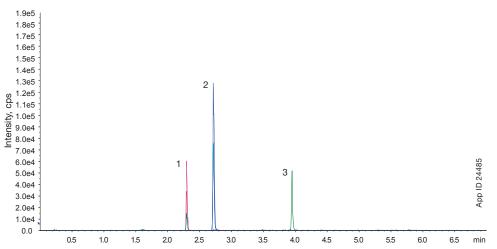
<sup>\*</sup>Apparent  $\beta$ -sitosterol =  $\beta$ -sitosterol =  $\beta$ -sitosterol +  $\Delta$ -5-avenasterol +  $\Delta$ -5-avenasterol +  $\Delta$ -5-avenasterol + clarosterol + clarosterol + sitostanol +  $\Delta$ -5,24-stigmastadienol. Total sterols = cholesterol + 24-methylene cholesterol + brassicasterol + campesterol + campestanol + stigmasterol +  $\Delta$ -7-campesterol +  $\Delta$ -5,23-stigmastadienol + apparent  $\beta$ -sitosterol +  $\Delta$ -7-avenasterol.



### SLE Application: Acid, Neutrals, and Bases from Urine

### Introduction

In most LLE method, extracting multiple pH's is not feasible. We will demonstrate how a specific pH manipulation can lead to extraction conditions of a relatively hydrophobic acid (THC-COOH) along with more polar bases (buprenorphine and norbuprenorphine) and neutrals (barbiturates). We developed a SLE application for acids, neutrals, and bases using Novum™ SLE from a urine matrix containing β-glucuronidase followed by two LC-MS/MS methods. This method exhibits the versatility and effectiveness using Novum SLE.

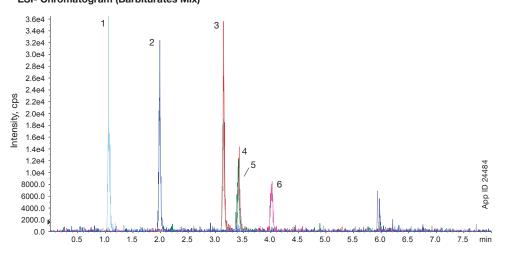

### **Pre-treatment**

To 200 μL of urine, add 25 μL of β-Glucuronidase Enzyme, 25 μL Ammonium Acetate Buffer (100 mM, pH4), 180 µL Ammonium Bicarbonate Buffer (100 mM, pH9) and 20 µL Internal Standard (1 μg/mL). Final total volume is 450 μL.

### ESI+ Chromatogram (Buprenophrine/Norbuprenorphine/THC-COOH)

### **SLE Protocol**

| 96-Well Plate: | Novum MAX SLE                                                                                                                                  |
|----------------|------------------------------------------------------------------------------------------------------------------------------------------------|
| Part No.:      | 8E-S138-5GA                                                                                                                                    |
| Load:          | Pre-treated sample and pulse vacuum at 5" Hg for 2-3 seconds, or until the sample completely enters the sorbent bed. Wait for 6 minutes        |
| Elute:         | 2×900 µL Ethyl acetate and elute by gravity.<br>Apply 5" vacuum at end of elution to collect<br>residual solvent from tips in collection plate |
| Dry Down:      | Under a gentle stream of nitrogen at 30°C                                                                                                      |
| Reconstitute:  | Reconstitute in 100 µL of Methanol/Water (1:4) with 100 ng/mL of COOH-THC-D3, 250 ng/mL of Ammobarbital-D5 and 100 ng/mL of Morphine-D6        |




### **Positive Mode LC-MS/MS Conditions** Column: Kinetex® 2.6 µm Biphenyl 100Å

**Dimensions:** 50 x 2.1 mm Part No.: 00B-4622-AN **Guard Cartridge:** SecurityGuard™ ULTRA Biphenyl **Guard Part No.:** AJ0-9209 Mobile Phase: A: 0.1% Formic acid in Water B: 0.1% Formic acid in Acetonitrile **Gradient:** Time (min) %B 100 5.1 Flow Rate: 0.5 mL/min Injection: 4 uL Temperature: Ambient Detection: MS/MS (SCIEX API 4000™) Sample: 1 Norbuprenorphine

> 2. Buprenorphine 3. THC-COOH

### ESI- Chromatogram (Barbiturates Mix)



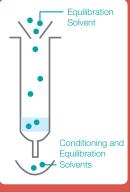
### **Negative Mode LC-MS/MS Conditions**

Column: Kinetex 2.6 µm EVO C18 100Å Dimensions: 50 x 2.1 mm Part No.: 00B-4725-AN Guard Cartridge: SecurityGuard ULTRA EVO C18 Guard Part No.: A.I0-9298 Mobile Phase: A: 10 mM Ammonium bicarbonate, pH 9 B: Acetonitrile **Gradient:** Time (min) %B 20 5.01 60 60 6 6.1 5 Flow Rate: 0.5 mL/min Injection: 4μL Temperature: Ambient MS/MS (SCIEX API 4000) Detection: 1. Phenobarbital 4. Amobarbital Sample: 2. Butalbital 5. Amobarbital-D5 3. Pentobarbital 6. Secobarbital



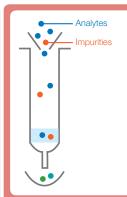
# Solid Phase Extraction (SPE)

SPE is the most targeted form of sample preparation. It can involve an automatable approach to concentrate samples, clean up matrix effects, and can be used for solvent exchange. SPE offers a variety of key technical advantages and economic benefits that LLE cannot match.


### **SPE General Protocol**

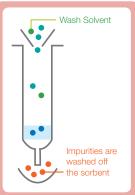
### 1. CONDITION

# Conditioning Solvent


A conditioning step activates the SPE sorbent.

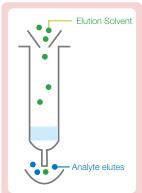
### 2. EQUILIBRATE




An equilibration solvent prepares the sorbent for interaction with your sample.

### 3. LOAD SAMPLE




Target analytes are loaded onto sorbent and selectively targeted to bind to the SPE sorbent.

### 4. WASH IMPURITIES



Interferences are washed away.

### 5. ELUTE ANALYTE



An elution solvent breaks the bond between the SPE sorbent and your target analytes, allowing them to be collected for further analysis.

Your sample is now clean and concentrated!

### **Product Recommendation Based on Target Analytes**

| Strong Acids (p $K_a$ < 2)          | Strata®-X-AW |
|-------------------------------------|--------------|
| Weak Acids (pK <sub>a</sub> 2-4)    | Strata-X-A   |
| Neutral Compounds                   | Strata-X     |
| Weak Bases (pK <sub>a</sub> 8-10)   | Strata-X-C   |
| Strong Bases (pK <sub>a</sub> > 10) | Strata-X-CW  |





### SPE Application: Increase Recovery of Pharmaceutical Drugs

### Introduction

SPE has an improved specificity towards particular analytes and has allowed analysts to improve recovery and reproducibility of their samples. This method explores the distinct differences between SLE and LLE for the isolation of diclofenac, a slightly acidic drug compound, from plasma using a water matrix as the control. It was found that SPE provides cleaner extracts, higher recoveries, and better reproducibility which can greatly improve results.

### **Materials and Methods**

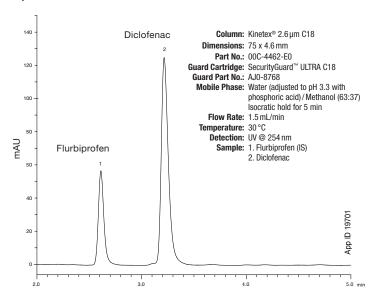
The plasma pre-treatment step was the same for SPE and LLE and was comprised of filtration through a gauze cloth. Afterwards,  $500\,\mu\text{L}$  of diclofenac, which was dissolved in 5% Methanol, was added to  $500\,\mu\text{L}$  of plasma, and the solution mixture was then acidified with  $600\,\mu\text{L}$  of 1M Phosphoric acid.

### **SPE Protocol**

| Cartridge:    | Strata®-X 30 mg on a 1 mL Presston™ 100 Positive Pressure Manifold (Part No.: AH0-9342) |
|---------------|-----------------------------------------------------------------------------------------|
| Part No.:     | 8B-S100-TAK                                                                             |
| Condition:    | 1 mL Methanol                                                                           |
| Equilibrate:  | 2 mL Water                                                                              |
| Load:         | 1.6 mL Pre-treated plasma                                                               |
| Wash:         | 1 mL 5% Methanol                                                                        |
| Dry:          | 1 minute under vacuum at 10 inches Hg                                                   |
| Elute:        | 1 mL Methanol                                                                           |
| Dry down:     | Dry down @ 53 °C under a stream of nitrogen for 20 minutes                              |
| Reconstitute: | 500 μL of mobile phase                                                                  |

### **Liquid-Liquid Extraction**

- 1. After pre-treatment, add 5 mL of Hexane/IPA (95:5) to the pre-treated solution
- Vortex for 1 minute and then centrifuge at 2,000 rpm for 10 minutes
- 3. Take 4 mL of the top organic layer and transfer to a clean glass centrifuge tube
- 4. Evaporate to dryness under a stream of nitrogen at 53 °C for 20 minutes


Structure of Internal Standard Flurbiprofen and Diclofenac

Flurbiprofen (p
$$K_a = 4.2$$
)

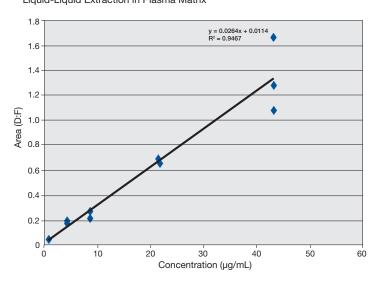
 $CI$ 
 $NH$ 
 $CI$ 
 $OH$ 
 $OH$ 

### LC-UV

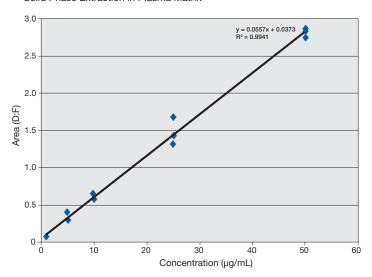
Chromatogram of Diclofenac and IS after SPE extraction from a plasma matrix.



Diclofenac spiked plasma sample ( $50\,\mu g/mL$ ) after extraction with Strata-X. Flurbiprofen (IS) was added post-extraction at a concentration of  $160\,\mu g/mL$ .


Note: the flurbiprofen was added post-blowdown, which is also post-extraction.






### SPE Application: Increase Recovery of Pharmaceutical Drugs (cont'd)

### **Diclofenac Extracted Reference Curve:** Liquid-Liquid Extraction in Plasma Matrix



**Diclofenac Extracted Reference Curve:**Solid Phase Extraction in Plasma Matrix



### **Results and Discussion**

It was found that SPE on the Strata®-X sorbent yields approximately 86% absolute recovery of 15 µg/mL of diclofenac in the plasma matrix as opposed to 46% for LLE (**Table 1**). This accounts for almost a two-fold decrease in recovery when using LLE. Furthermore, while this procedure for LLE involved one extraction step, in order to have obtained a greater yield, a greater amount of solvent would have been required. This would not have only increased the

**Table 1.**% Absolute Recovery for Diclofenac

|     | Spiked concentration (µg/mL) | Diclofenac<br>(% Recovery) | Mean % RSD<br>(n=4) |
|-----|------------------------------|----------------------------|---------------------|
| SPE | 15                           | 86                         | 10                  |
| LLE | 15                           | 46                         | 35                  |



time required to obtain a higher extraction yield, but would also increase the total time required for the evaporation of the solvent. In addition to SPE providing a greater absolute % recovery by two-fold over LLE the Strata-X sorbent procedure shows less variability between. According to the % RSD values for SPE and LLE, SPE is more precise and reproducible than LLE for the extraction of pharmaceutical compounds.

Consequently, this data shows that SPE provides greater absolute recovery of diclofenac when compared to LLE: SPE is less time-intensive, consumes less solvent than traditional LLE procedures, and provides better reproducibility, thereby demonstrating that the extraction method of choice for pharmaceuticals, such as diclofenac, is SPE.



### SPE Application: Improved Analysis of Semivolatile Environmental Pollutants

### Introduction

The method for EPA 625, which tests for a wide range of semi-volatile organic pollutants in water, specifies LLE followed by GC-MS analysis. With the importance on increased productivity gains, successful implementation of the SPE technique has gained attention over the traditional LLE method for faster extraction time, reduced solvent use, increased reproducibility, and increased recovery. This method shows an improved SPE methodology that incorporates large-particle polymeric SPE cartridges (Strata®-

Optimized SPE Protocol for EPA Method 625

### **Sample Pre-Treatment**

2 mL concentrated HCl was spiked in 1 L of water matrix to target a pH between 1 and 3. 20 µL of each surrogate (acid and base) was spiked at 1000 µg/mL.

### **SPE Protocol**

| Cartridge:        | Strata-XL-C, 2 g/20 mL Giga™ Tube                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Part No.:         | 8B-S044-KEG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
| Condition:        | 10 mL methanol followed by 10 mL DI water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
| Load:             | The pre-treated 1 L water sample was loaded at 10-12 mL/min                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
| Dry:              | Reservoir tubes used for loading the sample were removed and the SPE cartridges were dried by applying vacuum (15-20" of Hg) for 4-5 minutes                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
| Elution 1:        | <ul> <li>2 aliquots of 2 mL acetone</li> <li>2 aliquots of 2 mL dichloromethane/acetone (3:1)</li> <li>3 aliquots of 2 mL dichloromethane</li> </ul>                                                                                                                                                                                                                                                                                                                                                                               |  |  |
| Elution 2:        | 2 aliquots of 4.5 mL ethyl acetate/methanol (1:1) in 1.5% NH <sub>4</sub> OH. (To prepare the aliquots, 9.5 mL of ethyl acetate was combined with 9.5 mL of methanol and 1 mL of 30% NH <sub>4</sub> OH and vortexed for 30 seconds)                                                                                                                                                                                                                                                                                               |  |  |
| Water<br>Removal: | Elution 1 and elution 2 fractions were passed through separate Strata Sodium Sulfate 10 g/20 mL cartridges separately to remove water under gravity. Concentrated elution 1 and 2 fractions were collected in two separate test tubes. To collect residual amounts of sample from the Strata Sodium Sulfate cartridges, elution with an additional 4 mL of dichloromethane per cartridge was performed. After the addition of dichloromethane, two layers were formed. The stopcock was opened to collect the bottom organic layer |  |  |
| Dry Down:         | Samples were dried using a TurboVap® under nitrogen (no heat) until the volume of elution 1 and elution 2 was reduced to 0.5 mL. Samples were not evaporated to complete dryness to prevent analyte loss                                                                                                                                                                                                                                                                                                                           |  |  |
| Reconstitute:     | Elution 1 and elution 2 fractions were combined (total volume ~1 mL) and reconstituted to a total volume of 4 mL with dichloromethane. 50 µL of internal standard                                                                                                                                                                                                                                                                                                                                                                  |  |  |

XL-C) and improvements in drying, which is effective for EPA 625 analytes and is considerably faster and easier than LLE. Following the optimized SPE protocol, the sample is analyzed by GC-MS using a Zebron™ ZB-SemiVolatiles GC column, resulting in a rapid 17 minute run time. By utilizing the large-particle SPE method and GC method outlined here, EPA Method 625 efficiency, reproducibility, and productivity are dramatically improved.

### SPE accessories and set-up used for sample processing



### **GC Conditions**

Column: Zebron ZB-SemiVolatiles

Dimensions: 30 meter x 0.25 mm x 0.25 µm

Part No.: 7HG-G027-11

Recommended Liner: Zebron PLUS Single Taper Z-Liner™ (for Agilent® Systems)

Liner Part No.: AG2-0A13-05 Injection: Splitless @ 250 °C, 1 µL

Carrier Gas: Helium @ 1.6 mL/min (constant flow)

**Oven Program:** 40 °C for 0.66 min to 260 °C @ 30 °C/min to 295 °C @ 6 °C/min

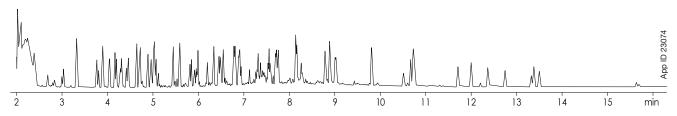
to 325 °C @ 25 °C min for 2 min

Detector: MSD @ 300 °C; 40-500 amu

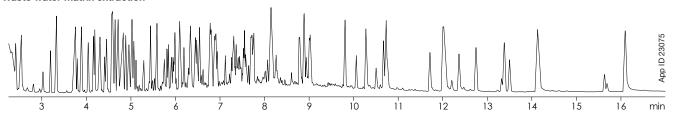
Samples: View full list of analytes online



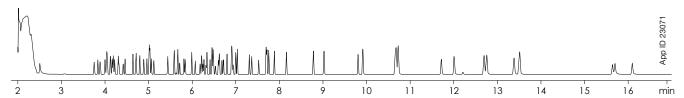
was spiked at 1000 µg/mL




### SPE Application: Improved Analysis of Semivolatile Environmental Pollutants (cont'd)


Optimized SPE Method vs. LLE

| Protocol Components       | Traditional LLE Method | Strata®-XL-C SPE Method       | SPE Improvements         |
|---------------------------|------------------------|-------------------------------|--------------------------|
| Throughput (samples/day)  | 20                     | 30-35                         | <b>↑</b> 50-75% Increase |
| Solvent Usage (mL/sample) | > 360                  | 41                            | Significant Decrease     |
| Glassware                 | ~ 100 pieces (large)   | < 100 test tubes (disposable) | Significant Decrease     |
| Data Quality              | Sufficient             | Improved                      | <b>↑</b> Increase        |
| Manual Labor              | High                   | Very Low                      | Significant Decrease     |
| Procedural Steps          | Dozens                 | 6                             | Significant Decrease     |


### **TCLP** matrix extraction



### Waste water matrix extraction



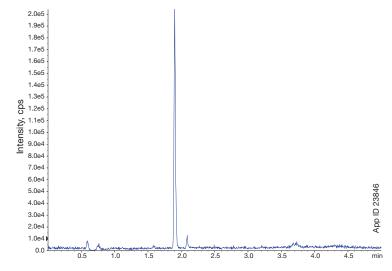
### EPA Method 625 at 25 µg/mL





### SPE Application: A Sensitive Extraction and Analysis of Urinary Catecholamines

### Introduction


As an additional benefit of SPE, the microelution format allows one to use small sample concentrations and still achieve high recoveries and sensitive analyses, all while skipping the dry down step and saving time. LLE uses large solvent volumes and requires high analyte concentrations in order to achieve high recovery and a dry down step that can take a significant amount of time. In this application, an interference that coelutes with 3-Methoxytyramine on a standard C18 HPLC column will be resolved using Strata®-X-CW Microelution SPE 96-Well Plates in conjunction with a Kinetex® Biphenyl HPLC column, while reaching low limits of quantification for specific urinary catecholamines, metanephrine, and normetanephrine. This method displays that microelution SPE can clean-up and concentrate with small or limited sample volumes.

### **SPE Method**

| Microelution<br>96-Well Plate: | Strata-X-CW 2 mg/well                                                                                                                            |
|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| Part No.:                      | 8M-S035-4GA                                                                                                                                      |
| Condition:                     | 200 µL Methanol                                                                                                                                  |
| Equilibrate:                   | 200 µL 50 mM Ammonium acetate buffer, pH 7                                                                                                       |
| Load:                          | 1 mL of pretreated sample (500 µL of urine was diluted with 500 µL of 50 mM Ammonium acetate buffer, (pH 7). Urine was pre-spiked with standards |
| Wash 1:                        | 200 µL of 50 mM Ammonium acetate buffer, pH 7                                                                                                    |
| Wash 2:                        | 200 μL Acetonitrile/IPA (1:1)                                                                                                                    |
| Elute:                         | 2x25µL of Water/Acetonitrile/Formic acid (85:10:5)                                                                                               |
| Dry Down:                      | NOT REQUIRED. Save 30 minutes or more!                                                                                                           |
| Injection:                     | Dilute eluent with 100 μL of 0.1% Formic acid in water                                                                                           |

Recovery Values from 10 ng/mL to 63 pg/mL

### Chromatogram of resolved interference for 3-methoxytyramine at 1 ng/mL

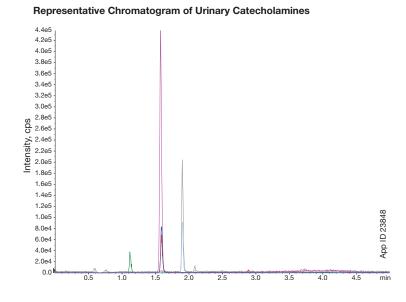


### **LC-MS/MS Conditions**

Column: Kinetex 5 µm Biphenyl Dimensions: 50 x 4.6 mm Part No.: 00B-4627-E0 **Guard Cartridge** SecurityGuard™ ULTRA Biphenyl **Guard Part No.:** AJ0-9207 Mobile Phase: A: 0.1% Formic acid in Water B: 0.1% Formic acid in Methanol Time (min) %B **Gradient:** 90 3.1 5 Flow Rate: 0.7 ml /min 30 uL Injection:

Ambient

**Detection:** MS/MS (SCIEX API 4000<sup>™</sup>)


Temperature:

Small

elution

volume!

| Analyte Concentration (ng/mL) | Average %<br>Recovery | %CV<br>(n=6) |
|-------------------------------|-----------------------|--------------|
| Metanephrine                  |                       |              |
| 10                            | 102                   | 5            |
| 1                             | 102                   | 3            |
| 0.5                           | 99                    | 2            |
| 0.25                          | 99                    | 3            |
| 0.125                         | 97                    | 3            |
| 0.063                         | 94                    | 6            |
| Normetanephrine               |                       |              |
| 10                            | 100                   | 10           |
| 1                             | 87                    | 12           |
| 0.5                           | 110                   | 10           |
| 0.25                          | 89                    | 9            |
| 0.125                         | 110                   | 13           |
| 0.063                         | 108                   | 15           |
| 3-Methoxytyramine             |                       |              |
| 10                            | 91                    | 3            |
| 1                             | 89                    | 6            |
| 0.5                           | 95                    | 4            |
| 0.25                          | 86                    | 5            |
| 0.125                         | 87                    | 6            |
| 0.063                         | 92                    | 7            |





## SLE Ordering Information

### Diatomaceous Earth (DE) SLE

### Strata® DE SLE Well Plates

| Strata-DE Diatomaceous Earth SLE Well Plates |                                    |      |  |  |
|----------------------------------------------|------------------------------------|------|--|--|
| Part No. Description Unit                    |                                    |      |  |  |
| 8E-S325-FGB                                  | Strata DE SLE 200 µL 96-Well Plate | 2/pk |  |  |
| 8E-S325-5GB                                  | Strata DE SLE 400 µL 96-Well Plate | 2/pk |  |  |

### Strata DE SLE Tubes

| Strata-DE Diator          | Strata-DE Diatomaceous Earth SLE Tubes |       |  |  |  |
|---------------------------|----------------------------------------|-------|--|--|--|
| Part No. Description Unit |                                        |       |  |  |  |
| 8B-S325-KDG               | Strata DE SLE 12 cc Tubes              | 20/pk |  |  |  |
| 8B-S325-VFF               | 8B-S325-VFF Strata DE SLE 60 cc Tubes  |       |  |  |  |

### Synthetic SLE

### Novum<sup>™</sup> SLE 96-Well Plates

| Novum Simplified Liquid Extraction SLE Well Plates |                              |      |  |  |
|----------------------------------------------------|------------------------------|------|--|--|
| Part No. Description Unit                          |                              |      |  |  |
| 8E-S138-FGA                                        | Novum SLE MINI 96-Well Plate | 1/pk |  |  |
| 8E-S138-5GA                                        | Novum SLE MAX 96-Well Plate  | 1/pk |  |  |

### **Novum SLE Tubes**

| Novum Simplified Liquid Extraction SLE Tubes |                       |        |  |  |
|----------------------------------------------|-----------------------|--------|--|--|
| Part No.                                     | Unit                  |        |  |  |
| 8B-S138-FAK                                  | Novum SLE 1 cc Tubes  | 100/pk |  |  |
| 8B-S138-5BJ                                  | Novum SLE 3 cc Tubes  | 50/pk  |  |  |
| 8B-S138-JCH                                  | Novum SLE 6 cc Tubes  | 30/pk  |  |  |
| 8B-S138-KDG                                  | Novum SLE 12 cc Tubes | 20/pk  |  |  |



If Phenomenex SLE products do not perform as well or better than your current SLE product, send in your comparative data within 45 days and keep the product for FREE!

### 



### **Presston 100 Positive Pressure Manifold**

| Presston 100 |                                                                      |
|--------------|----------------------------------------------------------------------|
| Part No.     | Description                                                          |
| AH0-9334     | Presston 100 Positive Pressure Manifold, 96-Well Plate               |
| AH0-9342     | Presston 100 Positive Pressure Manifold, 1 mL Tube Complete Assembly |
| AH0-9347     | Presston 100 Positive Pressure Manifold, 3 mL Tube Complete Assembly |
| AH0-9343     | Presston 100 Positive Pressure Manifold, 6 mL Tube Complete Assembly |

The Presston 100 96-Well Positive Pressure Manifold can also process 1, 3, and 6 mL tubes using the following adapter kits

| Presston 100 Tube Adapter Kits (for AH0-9334) |                        |    |  |  |
|-----------------------------------------------|------------------------|----|--|--|
| Part No. Description Uni                      |                        |    |  |  |
| AH0-9344                                      | 1 mL Tube Adapter Kit  | ea |  |  |
| AH0-9345                                      | 3 mL Tube Adapter Kit  | ea |  |  |
| VHU-0346                                      | 6 ml. Tuha Adantar Kit | ۵۵ |  |  |

### **Vacuum Manifold**

| Vacuum Manfolds          |                                                     |    |  |  |
|--------------------------|-----------------------------------------------------|----|--|--|
| Part No. Description Uni |                                                     |    |  |  |
| AH0-6023                 | 12-Position Tube Vacuum Manifold Set                | ea |  |  |
| AH0-6024                 | 24-Position Tube Vacuum Manifold Set                | ea |  |  |
| AH0-8950                 | 96-Well Plate Manifold, Universal with Vacuum Gauge | ea |  |  |



Phenomenex warrants that for a period of 12 months following delivery, the Presston 100 Positive Pressure Manifold you have purchased will perform in accordance with the published specifications and will be free from defects in materials or workmanship. In the event that the Presston 100 Positive Pressure Manifold does not meet this warranty, Phenomenex will repair or replace defective parts. Please visit **www.phenomenex.com/Presston** for complete warranty information.

Phenomenex | WEB: www.phenomenex.com



# SPE Ordering Information

### **SPE Tubes**

### **Process Multiple Samples at Once**



### **Process Samples Manually**



### Strata® Silica-Based Sorbents

| Tubes           | 1 mL (100/box) |             | 3 mL (50/box) |             |             | 6 mL (30/box) |             |             |
|-----------------|----------------|-------------|---------------|-------------|-------------|---------------|-------------|-------------|
| Phase           | 50 mg          | 100 mg      | 100 mg        | 200 mg      | 500 mg      | 200 mg        | 500 mg      | 1 g         |
| C18-E           | 8B-S001-DAK    | 8B-S001-EAK | 8B-S001-EBJ   | 8B-S001-FBJ | 8B-S001-HBJ | 8B-S001-FCH   | 8B-S001-HCH | 8B-S001-JCH |
| C18-U           | _              | 8B-S002-EAK | _             | 8B-S002-FBJ | 8B-S002-HBJ | _             | 8B-S002-HCH | 8B-S002-JCH |
| C18-T           | _              | 8B-S004-EAK | _             | 8B-S004-FBJ | 8B-S004-HBJ | _             | 8B-S004-HCH | 8B-S004-JCH |
| C8              | _              | 8B-S005-EAK | _             | 8B-S005-FBJ | 8B-S005-HBJ | _             | 8B-S005-HCH | 8B-S005-JCH |
| Phenyl          | _              | 8B-S006-EAK | _             | 8B-S006-FBJ | 8B-S006-HBJ | _             | 8B-S006-HCH | 8B-S006-JCH |
| SCX             | _              | 8B-S010-EAK | 8B-S010-EBJ   | 8B-S010-FBJ | 8B-S010-HBJ | _             | 8B-S010-HCH | 8B-S010-JCH |
| WCX             | _              | 8B-S027-EAK | _             | 8B-S027-FBJ | 8B-S027-HBJ | _             | 8B-S027-HCH | 8B-S027-JCH |
| SAX             | _              | 8B-S008-EAK | 8B-S008-EBJ   | 8B-S008-FBJ | 8B-S008-HBJ | _             | 8B-S008-HCH | 8B-S008-JCH |
| NH <sub>2</sub> | _              | 8B-S009-EAK | _             | 8B-S009-FBJ | 8B-S009-HBJ | _             | 8B-S009-HCH | 8B-S009-JCH |
| CN              | _              | 8B-S007-EAK | _             | 8B-S007-FBJ | 8B-S007-HBJ | _             | 8B-S007-HCH | 8B-S007-JCH |
| Si-1            | _              | 8B-S012-EAK | _             | 8B-S012-FBJ | 8B-S012-HBJ | _             | 8B-S012-HCH | 8B-S012-JCH |
| Florisil®       | _              | _           | _             | _           | 8B-S013-HBJ | _             | 8B-S013-HCH | 8B-S013-JCH |
| EPH             | _              | _           | _             | _           | 8B-S031-HBJ | _             | _           | _           |
| AL-N            | _              | _           | _             | _           | 8B-S313-HBJ | _             | _           | 8B-S313-JCH |

### Mixed-mode sorbents (for drugs of abuse)

| Tubes    | 1 mL (100/box) |             | 3 mL (50/box) |             |             | 6 mL (30/box) |             |   |
|----------|----------------|-------------|---------------|-------------|-------------|---------------|-------------|---|
| Phase    | _              | 100 mg      | 100 mg        | 150 mg      | 200 mg      | 200 mg        | 500 mg      |   |
| Screen-C | _              | 8B-S016-EAK | 8B-S016-EBJ   | 8B-S016-SBJ | 8B-S016-FBJ | 8B-S016-FCH   | 8B-S016-HCH | _ |
| Screen-A | _              | 8B-S019-EAK | _             | _           | 8B-S019-FBJ | 8B-S019-FCH   | 8B-S019-HCH | _ |

### **Polymeric sorbents**

| Tubes | 1 mL (100/box) |             | 3 mL (50/box) |             |             | 6 mL (30/box) |             |             |
|-------|----------------|-------------|---------------|-------------|-------------|---------------|-------------|-------------|
| Phase | 50 mg          | 100 mg      | _             | 200 mg      | 500 mg      | 200 mg        | 500 mg      | 1 g         |
| SDB-L | 8B-S014-DAK    | 8B-S014-EAK | _             | 8B-S014-FBJ | 8B-S014-HBJ | 8B-S014-FCH   | 8B-S014-HCH | 8B-S014-JCH |

### **Strata-X Polymer-Based Sorbents**

| Tubes        | 1 mL (100/box) |             | 3 mL (50/box) |             |             | 6 mL (30/box) |             |             |
|--------------|----------------|-------------|---------------|-------------|-------------|---------------|-------------|-------------|
| Phase        | 30 mg          | 60 mg       | 60 mg         | 200 mg      | 500 mg      | 100 mg        | 200 mg      | 500 mg      |
| Strata-X     | 8B-S100-TAK    | 8B-S100-UAK | 8B-S100-UBJ   | 8B-S100-FBJ | 8B-S100-HBJ | 8B-S100-ECH   | 8B-S100-FCH | 8B-S100-HCH |
| Strata-X-C   | 8B-S029-TAK    | _           | 8B-S029-UBJ   | 8B-S029-FBJ | 8B-S029-HBJ | 8B-S029-ECH   | 8B-S029-FCH | 8B-S029-HCH |
| Strata-X-CW  | 8B-S035-TAK    | _           | 8B-S035-UBJ   | 8B-S035-FBJ | 8B-S035-HBJ | 8B-S035-ECH   | 8B-S035-FCH | 8B-S035-HCH |
| Strata-X-A   | 8B-S123-TAK    | _           | 8B-S123-UBJ   | 8B-S123-FBJ | 8B-S123-HBJ | 8B-S123-ECH   | 8B-S123-FCH | 8B-S123-HCH |
| Strata-X-AW  | 8B-S038-TAK    | _           | 8B-S038-UBJ   | 8B-S038-FBJ | 8B-S038-HBJ | 8B-S038-ECH   | 8B-S038-FCH | 8B-S038-HCH |
| Strata-XL    | 8B-S043-TAK    | _           | 8B-S043-UBJ   | 8B-S043-FBJ | 8B-S043-HBJ | 8B-S043-ECH   | 8B-S043-FCH | 8B-S043-HCH |
| Strata-XL-C  | 8B-S044-TAK    | _           | 8B-S044-UBJ   | 8B-S044-FBJ | 8B-S044-HBJ | 8B-S044-ECH   | 8B-S044-FCH | 8B-S044-HCH |
| Strata-XL-CW | 8B-S052-TAK    | _           | 8B-S052-UBJ   | 8B-S052-FBJ | 8B-S052-HBJ | 8B-S052-ECH   | 8B-S052-FCH | 8B-S052-HCH |
| Strata-XL-A  | 8B-S053-TAK    | _           | 8B-S053-UBJ   | 8B-S053-FBJ | 8B-S053-HBJ | 8B-S053-ECH   | 8B-S053-FCH | 8B-S053-HCH |
| Strata-XL-AW | 8B-S051-TAK    | _           | 8B-S051-UBJ   | 8B-S051-FBJ | 8B-S051-HBJ | 8B-S051-ECH   | 8B-S051-FCH | 8B-S051-HCH |

### **Accessories For Tubes**

| Adapter Caps |                                                                        |       |
|--------------|------------------------------------------------------------------------|-------|
| Part No.     | Description                                                            | Unit  |
| AH0-7191     | Adapter Caps for 1, 3, and 6 mL SPE tubes, polyethylene, with Luer tip | 15/pk |



# SPE Ordering Information

### SPE 96-Well Plates

### **Process Samples with a Vacuum Manifold**



### **Process Samples with a Robot**



### Strata®-X Polymer-Based Sorbents

| 96-Well Plates (2/Box) |             |             |             |  |  |  |
|------------------------|-------------|-------------|-------------|--|--|--|
| Phase                  | 10 mg       | 30 mg       | 60 mg       |  |  |  |
| Strata-X-AW            | 8E-S038-AGB | 8E-S038-TGB | 8E-S038-UGB |  |  |  |
| Strata-X-A             | 8E-S123-AGB | 8E-S123-TGB | 8E-S123-UGB |  |  |  |
| Strata-X               | 8E-S100-AGB | 8E-S100-TGB | 8E-S100-UGB |  |  |  |
| Strata-X-C             | 8E-S029-AGB | 8E-S029-TGB | 8E-S029-UGB |  |  |  |
| Strata-X-CW            | 8E-S035-AGB | 8E-S035-TGB | 8E-S035-UGB |  |  |  |
| Strata-XL-AW           | -           | 8E-S051-TGB | -           |  |  |  |
| Strata-XL-A            | _           | 8E-S053-TGB | _           |  |  |  |
| Strata-XL              | -           | 8E-S043-TGB | -           |  |  |  |
| Strata-XL-C            | _           | 8E-S044-TGB | -           |  |  |  |
| Strata-XL-CW           | -           | 8E-S052-TGB | -           |  |  |  |

### **Strata Silica-Based Sorbents**

| 96-Well Plates (2 | 2/Box)      |             |             |
|-------------------|-------------|-------------|-------------|
| Phase             | 25 mg       | 50 mg       | 100 mg      |
| C18-E             | 8E-S001-CGB | 8E-S001-DGB | 8E-S001-EGB |
| C18-U             | _           | 8E-S002-DGB | 8E-S002-EGB |
| C18-T             | 8E-S004-CGB | 8E-S004-DGB | _           |
| C8                | 8E-S005-CGB | _           | _           |
| Phenyl            | 8E-S006-CGB | _           | 8E-S006-EGB |
| Silica            | _           | 8E-S012-DGB | 8E-S012-EGB |
| NH <sub>2</sub>   | 8E-S009-CGB | 8E-S009-DGB | 8E-S009-EGB |
| SAX               | 8E-S008-CGB | 8E-S008-DGB | 8E-S008-EGB |
| SCX               | 8E-S010-CGB | 8E-S010-DGB | 8E-S010-EGB |
| WCX               | 8E-S027-CGB | 8E-S027-DGB | _           |
| Screen-C          | _           | 8E-S016-DGB | 8E-S016-EGB |
| SDB-L             | _           | 8E-S014-DGB | _           |
|                   |             |             |             |

### **Strata-X Microelution Plates**

| 96-Well Plates (ea) |             |  |  |  |
|---------------------|-------------|--|--|--|
| Phase               | 2 mg        |  |  |  |
| Strata-X-AW         | 8M-S038-4GA |  |  |  |
| Strata-X-A          | 8M-S123-4GA |  |  |  |
| Strata-X            | 8M-S100-4GA |  |  |  |
| Strata-X-C          | 8M-S029-4GA |  |  |  |
| Strata-X-CW         | 8M-S035-4GA |  |  |  |

### Round Well Sealing Mats

| Part No. | Description               | Material | Unit  |
|----------|---------------------------|----------|-------|
| AH0-8631 | Pierceable, 7 mm diameter | Silicone | 50/pk |
| AH0-8632 | Pre-Slit, 7 mm diameter   | Silicone | 50/pk |
| AH0-8633 | Pierceable, 8 mm diameter | Silicone | 50/pk |
| AH0-8634 | Pre-Slit, 8 mm diameter   | Silicone | 50/pk |
| AH0-7362 | Sealing Tap Pad           | _        | 10/nk |

### Round Well Collection Plates (polypropylene)

| Part No. | Well Bottom | Well Volume | Unit  | Suggested Sealing Mats |
|----------|-------------|-------------|-------|------------------------|
| AH0-7279 | Round       | 1 mL        | 50/pk | AH0-8631<br>AH0-8632   |
| AH0-8636 | Round       | 2 mL        | 50/pk | AH0-8633<br>AH0-8634   |

### Square Well Sealing Mats

| Part No. | Description     | Material                     | Unit   |
|----------|-----------------|------------------------------|--------|
| AH0-8597 | Pierceable      | Silicone                     | 50/pk  |
| AH0-8598 | Pre-Slit        | Silicone                     | 50/pk  |
| AH0-8199 | Pierceable      | Santoprene™                  | 100/pk |
| AH0-7195 | Pierceable      | Ethylene Vinyl Acetate (EVA) | 50/pk  |
| AH0-7362 | Sealing Tap Pad | _                            | 10/pk  |

### **Square Well Collection Plates (polypropylene)**

| Part No. | Well Bottom       | Well Volume | Unit  | Suggested Sealing Mats                       |
|----------|-------------------|-------------|-------|----------------------------------------------|
| AH0-7192 | Conical           | 350 µL      | 50/pk | AHO-8597<br>AHO-8598<br>AHO-8199<br>AHO-7195 |
| AH0-7193 | Conical           | 1 mL        | 50/pk | AHO-8597<br>AHO-8598<br>AHO-8199<br>AHO-7195 |
| AH0-7194 | Conical           | 2 mL        | 50/pk | AHO-8597<br>AHO-8598<br>AHO-8199<br>AHO-7195 |
| AH0-8635 | Round-<br>Conical | 2 mL        | 50/pk | AHO-8597<br>AHO-8598<br>AHO-8199<br>AHO-7195 |



If Strata SPE products do not perform as well or better than your current SPE product of similar phase, mass and size, send in your comparative data within 45 days and keep the product for FREE!

### Using Liquid-Liquid Extraction (LLE)?

### There's a Cleaner Way!



- **Australia** t: +61 (0)2-9428-6444 f: +61 (0)2-9428-6445

- Belgium +32 (0)2 503 4015 (French) +32 (0)2 511 8666 (Dutch) +31 (0)30-2383749 beinfo@phenomenex.com

- Canada t: +1 (800) 543-3681

- China t: +86 400-606-8099 f: +86 (0)22 2532-1033

### **Denmark** t: +45 4824 8048

- f: +45 4810 6265
- nordicinfo@phenomenex.com

- Finland t: +358 (0)9 4789 0063 f: +45 4810 6265

- India t: +91 (0)40-3012 2400 f: +91 (0)40-3012 2411

- Ireland t: +353 (0)1 247 5405

- Italy t: +39 051 6327511 f: +39 051 6327555

- f: +31 (0)30-2383749

- **Mexico** t: 01-800-844-5226 f: 001-310-328-7768
- tecnicomx@phenomenex.com

- f: +31 (0)30-2383749

- Norway t: +47 810 02 005 f: +45 4810 6265

- f: +1 (310) 328-7768 info@phenomenex.com

- **Spain** t: +34 91-413-8613 f: +34 91-413-2290

- **Sweden** t: +46 (0)8 611 6950
- f: +45 4810 6265

- United Kingdom t: +44 (0)1625-501367 f: +44 (0)1625-501796

- t: +1 (310) 212-0555 f: +1 (310) 328-7768

### All other countries Corporate Office USA t: +1 (310) 212-0555

- f: +1 (310) 328-7768 info@phenomenex





### www.phenomenex.com

Phenomenex products are available worldwide. For the distributor in your country, contact Phenomenex USA, International Department at international@phenomenex.com

Terms and Conditions
Offer valid only for addressee and for part numbers not previously purchased by your lab. Offer must be specified at time of purchase and may not be combined with any additional discounts or promotional items. Limit 10 boxes of Novum SLE, Strata DS ELF, S

Trademarks
Strata and Kinetex are registered trademarks and Zebron, Novum, Giga, 5₽£US, Z-Liner, SecurityGuard and Presston
are trademarks of Phenomenex. Agilent is a registered trademark of Agilent Technologies. Biotage, TurboVap, and
ISOLUTE are registered trademarks of Biotage AB Corp. Santoprene is a trademark of Exxon Mobil Corporation.
Florisli is a registered trademark of U.S. Silica Co. API 4000 is a trademark of AB SCIEX Pte. Ltd. AB SCIEX is being
used under license.

Disclaimer
Phenomenex is not affiliated with Biotage AB Corp., Agilent Technologies, U.S. Silica Co, or Exxon Mobil Corporation.
Comparative separations mentioned in this brochure may not be representative of all applications.

FOR RESEARCH USE ONLY. Not for use in diagnostic procedures

Strata-X is patented by Phenomenex. U.S. Patent No. 7,119,145

Kinetex EVO is patented by Phenomenex. U.S. Patent Nos. 7,563,367 and 8,658,038 and foreign counterparts © 2018 Phenomenex, Inc. All rights reserved.